摘要伴随着计算机技术和互联网技术的发展,互联网为用户提供了越来越便捷的服务。在21世纪里,智能手机的出现,手机信息也在进入一个爆炸的时代。手机的快速发展,手机游戏变得越来越丰富和火热,手机游戏中海量信息意着巨大的利润。收集手机用户的历史行为和数据,建立起相关学习模型,挖掘用户的兴趣和需求,并从数据模型中,分析并预测用户的购买集,搭建一个推荐系统,是每个手机游戏的开发商与发行商所希望做的。28079
在本课题中,所采用的数据是由某游戏公司所提供的手机游戏用户数据集。根据数据集中所提供的用户信息,用户频繁登录信息以及用户支付信息,分析并筛选出其有用的用户信息。预测其用户可能的兴趣行为,并根据用户的可能行为,对用户推荐其接受并可能支付的手机计费游戏。在目前的推荐算法中,有基于规则、基于内容等主流的推荐算法。其中,协同过滤是这些算法中最为经典且有效的推荐算法。本课题采用协同过滤算法来设计推荐系统,并针对其表现出的问题如数据稀疏、扩展性差等问题,做一些对应的改进,并结合多种最近邻算法融合模型来获取最优推荐。
毕业论文关键词 推荐系统 协同过滤 数据稀疏
外文摘要
Title  The Research on the Recommendation Technology for the Mobile    Games                                                    
Abstract
With the development of computer technology and network technology, Internet has bring more and more convenience service for user. In the 21st century, the emergence of the smart phone, mobiles phone information has entered into a exploding period. With the rapid development of mobiles phone, mobile games become more and more various and hot, Huge data information In mobile games also means big profit. Collecting historical behavior and behavior of mobile phone user, establish a learning model, and mining user possible user interest and need, analyze and predict user buy set, and establish this recommendation system, is every mobile
In our project, out dataset is the mobile game user dataset provided by Duohe Game company. Based on the user information, user login record and user game order record in dataset, analyse and filter useful user information. Predict user possible behavior and mobile charging game which user will accept and paid to user on the basis of the user possible behavior. Nowadays, there are many recommend main stream algorithm like based on rule, based on content and others. One of them is every mobile games developer and publisher hope to do.
collaboration filtering which is also the most classical and the most effective recommendation algorithm. Our project aim to use collaboration filter to establish the recommendation system. We will contrary to some possible problems like data sparsity and bad expansibility and do some corresponding solutions, and combine model by some nearest neighbor methods to get best answer.
Keywords  recommendation system, collaborative filtering, data sparsity
目   录
中文摘要    3
外文摘要    4
目   录    I
1    绪论    1
1.1    研究背景与意义    1
1.2    国内外研究现状    1
1.3    本文主要内容及结构安排    1
2    协同过滤推荐技术概述    3
2.1    常见推荐技术    3
上一篇:基于Android平台恶意软件动态检测方法设计与实现
下一篇:RDMA性能在多租户环境下的测量研究虚拟机及容器

Android手机考勤平台的设计与实现

采用颜色共生矩阵的图像分析技术实现

Android员工请假系统设计

jsp《计算机硬件技术基础...

Android手机考勤系统设计

基于微信端的船厂现场安全巡检技术研究

基于Android的手机找回APP设计和实现

压疮高危人群的标准化中...

从政策角度谈黑龙江對俄...

浅论职工思想政治工作茬...

基于Joomla平台的计算机学院网站设计与开发

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

上海居民的社会参与研究

浅谈高校行政管理人员的...