海面粗糙度是表征海洋表面粗糙程度的物理量,主要描述小尺度上海面的起伏情 况。目前针对海面粗糙度的研究大多依靠遥感技术实现。
本文介绍了图像纹理的相关知识,详细阐述纹理分析的几种技术方法,包括结构分 析法、模型法、频率法和统计法,并通过比较最终选择颜色共生矩阵法(模型法)作为 本文的研究方法。
本文引进了向量空间模型的概念,结合颜色共生矩阵的基本特性。将 CCM 特征值转 化到向量空间的层面,同时表征图像间的关联程度也就变成了计算向量间距离的度量。 这样我们就可以建立起单独图像和这个数据库之间的桥梁,利用模型的文本检索的功能, 可以进行快速比对,提取重要信息,抑制噪声的干扰。
总之,本文从图像分析角度出发,利用模型法提取特征参数,建立图像的数据库分 析海面的粗糙程度 关键词:海面粗糙度,颜色共生矩阵法,纹理特征,图像粗糙度,向量空间模型
Title Realization of Image Analysis Technology with Color Co occurrence Matrix
Abstract:The sea surface roughness is the physical quantity that characterizes the roughness of the ocean surface, mainly describing the ups and downs of the small scale Shanghai surface. At present, most of the researches on sea surface roughness rely on remote sensing technology.
This paper introduces the knowledge of image texture, and elaborates several technical methods of texture analysis, including structural analysis method, model method, frequency method and statistical method, and compares the final selection color covariance matrix method (model method) as the research of this paper method.
This paper introduces the concept of vector space model, combined with the basic characteristics of color co-occurrence matrix. The CCM eigenvalues are transformed into the dimension of the vector space, and the degree of association between the images becomes the measure of the distance between the computational vectors. So that we can build a separate image and the bridge between the database, the use of model text retrieval function, you can quickly match, extract important information to suppress noise interference.
In summary, this paper from the perspective of image analysis, the use of model extraction of feature parameters, the establishment of the image database analysis of the roughness of the sea
Key words: Sea Surface Roughness, Color co - occurrence matrix method, Texture Feature, Image Roughness, Vector space model
目 次
1 引言 1
1.1 研究背景及意义 1
1.2 海面粗糙度 1
1.2.1 空气动力学粗糙度概念 1
1.2.2 海面粗糙度概念 1
1.3 研究现状 2
1.4 论文研究内容 3
2 纹理特征研究综述 4
2.1 纹理定义与分类 4
2.2 纹理特征 5
2.3 纹理特征提取方法 5
2.4 纹理分析应用领域 7
2.5 本章小结 7
3