例:设 都是数域F上的有限文线性空间V上的子空间,若子空间的和 不是直和,则V的每个向量的表示法都不唯一
证明:设V中有向量 表为 ,且唯一表出
    又设 ,则得
    但 的表示法唯一,故 。
    从而 ,即 唯一表出,所以 是直和,与假设矛盾。
引理1:设线性变换 的特征多项式为 ,它可分解成一次因式的乘积
        ,
则 可分解成不变子空间的直和
              其中 。
2.2线性空间的同构
同构定义:实数域 上线性空间 与 称为同构,如果由 到 有一个双射 ,满足
  这里 ,这样的映射 称为 到 的同构映射
引理2:设 是线性空间 的一组基,在该组基下, 中的每个向量都有确定的坐标,向量的坐标可以看成 中的元素。换句话说,向量与它的坐标之间的对应就是 到 的一个同构映射。因而,数域 上任一个 文线性空间都与 同构。
上一篇:对高校教师教学评价现状的调查
下一篇:基于情绪研究中国股票市场的定价及波动性

微课在中学数学素质教育中的应用

中学数学教学中的模型思想与应用

凯勒流形的复结构与代数结构研究

可展曲面的判定构造及其应用

Dirichlet判别法与Abel判别法的探究

一维Schroedinger算子只有离散谱的条件

螺纹钢期货交易中几个影...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

基于Joomla平台的计算机学院网站设计与开发

上海居民的社会参与研究

AES算法GPU协处理下分组加...

浅论职工思想政治工作茬...

浅谈高校行政管理人员的...

压疮高危人群的标准化中...

提高教育质量,构建大學生...

酵母菌发酵生产天然香料...