毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
矩阵的等价合同相似与矩阵的分解的理论与应用分析(2)
1.矩阵的等价、合同、相似
1.1矩阵的等价关系
1.1.1 矩阵等价关系的概念
定义 1 如果矩阵 可经过有限次初等变换化为 , 则称矩阵 与矩阵 等价,记为 .
矩阵等价的前提条件: 矩阵 与 矩阵必为同型矩阵, 不要求是方阵.
定理 1.1.1 两个 矩阵 等价的充要条件是:存在可逆的 阶矩阵 与可逆的 阶矩阵 , 使 .
定理1.1.2 若 为 矩阵,且 , 则一定存在可逆矩阵 ( 阶)和 ( 阶), 使得 . 其中 为 阶单位矩阵.
证明 若 ,即为标准形. 假设 .通过初等变化, 必将可以转化为一个左上角不为零的矩阵.
当 时, 进行如下的初等变化,把其余的行减去第一行的 倍, 其余列减去第一列 倍, 然后, 用 乘第一行, 就变成
是一个 的矩阵, 对 再重复上面的初等变化. 就可以得到标准形.
推论 1.1.1 设 、 是两 矩阵, 则 当且仅当 .
1.1.2 矩阵等价关系的性质
(1)反身性: .
(2)对称性: 若 则 .
(3)传递性:若 , 则 .
结论: 秩为等价关系中的不变量.
若按照等价来把矩阵分类, 那么可以分 类, 即 .
共2页:
上一页
1
2
下一页
上一篇:
重积分的应用探讨
下一篇:
空间曲线积分与曲面积分的若干计算方法
微课在中学数学素质教育中的应用
中学数学教学中的模型思想与应用
凯勒流形的复结构与代数结构研究
可展曲面的判定构造及其应用
Dirichlet判别法与Abel判别法的探究
一维Schroedinger算子只有离散谱的条件
螺纹钢期货交易中几个影...
STC89C52单片机NRF24L01的无线病房呼叫系统设计
浅谈高校行政管理人员的...
基于Joomla平台的计算机学院网站设计与开发
浅论职工思想政治工作茬...
酵母菌发酵生产天然香料...
上海居民的社会参与研究
AES算法GPU协处理下分组加...
压疮高危人群的标准化中...
从政策角度谈黑龙江對俄...
提高教育质量,构建大學生...