定义6  如果R是集合A上的二元关系,若有 成立,则称R具有欧几里得性.
为了给出本文的主要结论,即等价关系的另外两种定义,下面给出上述各种性质的联系.
    定理1  如果R具有自反性那么R具有持续性.
证明:由 R具有自反性的定义得,对任意的 ,均有xRx,这就有对任意的  ,在 A中都存在 y=x使得xRy,故 R具有持续性.
于是便得下面的定理 2.
    定理2  如果R具有持续性、对称性和传递性那么R具有自反性.
证明:由 R具有持续性的定义得,对任意的 ,在 A中都存在 y使得xRy,由对称性得yRx成立,再由xRx传递性得成立,即对任意的 ,均有成立xRx,故 R具有自反性.
定理3  如果R具有对称性和传递性那么R具有欧几里得性.
证明:假设R是集合 A上的二元关系,如果xRy并且 xRz,由R具有对称性的定义得,有 yRx成立,再由 R具有传递性的定义得 yRz成立.即有 成立,故 R具有欧几里得性.
     定理4  如果R具有自反性和欧几里得性那么R具有对称性和传递性.
证明:设 R是集合 A上的二元关系,若 yRx成立,由 R具有自反性的定义得 xRx成立, 再由R具有欧几里得yRx性的定义得yRx成立,即有 成立,故 R具有对称性.设 R是集合 A上的二元关系,R具有自反性和欧几里得性,若有 xRy且 yRz成立,则由上面的对称性的证明得 yRx且 yRz成立,再由R具有欧几里得性的定义xRz成立,即有 成立,故 R具有传递性.
1.2 等价关系的等价定义[3]
  离散数学和近世代数的教材中对等价关系一般都定义如定义1所述,本文还将给出等价关系的另外两种定义 ,即定义2和定义3.
    定义1  集合 A上的一个二元关系 R如果满足自反性、对称性和传递性,那么称二元关系 R为 A上的等价关系.
    定义2  集合 A上的一个二元关系 R如果满足持续性、对称性和传递性,那么称二元关系 R为 A上的等价关系.
上一篇:构造法在中学数学中的应用
下一篇:单位圆在三角函数中的应用

微课在中学数学素质教育中的应用

中学数学教学中的模型思想与应用

凯勒流形的复结构与代数结构研究

可展曲面的判定构造及其应用

Dirichlet判别法与Abel判别法的探究

一维Schroedinger算子只有离散谱的条件

螺纹钢期货交易中几个影...

基于Joomla平台的计算机学院网站设计与开发

AES算法GPU协处理下分组加...

酵母菌发酵生产天然香料...

提高教育质量,构建大學生...

浅谈高校行政管理人员的...

从政策角度谈黑龙江對俄...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

上海居民的社会参与研究

浅论职工思想政治工作茬...

压疮高危人群的标准化中...