毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
迭代法收敛判定的应用举例(2)
X(K) = (X1(K),…,XI(K),…XN(K))T,[03]
由雅克比迭代公式有Dx(k+1) = (L+U)x(k)+b,
或 aiixi(k+1) = -∑_(j=1)^(i-1)▒a_ij x_j^((k)) - ∑_(j=i+1)^n▒〖a_ij x_j^((k)) 〗+bi, I=1,2,3,…,n.
于是,解Ax = b的雅克比迭代式的计算方法为
x(0) = (x1(0),x2(0),…,xn(0))T,
xi(k+1) = (bi-∑_(j=1,j≠i)^n▒〖a_ij x_j^((k)) 〗)/aii,
I = 1,2,…,n;k=0,1,…表示迭代次数。
由上式可知,雅克比迭代式计算公式简单,每迭代一次只需计算一次矩阵和向量的乘法且计算过程中原始矩阵A始终不变。
1.2 GS迭代法
选取分裂矩阵M为A的下三角部分,[02]即选取M = D – L(下三角矩阵),A = M-N,于是由
X(0) (初始向量)
X(K+1) =BX(K) + F,K = 0,1,…,
其中B = I-(D-L)-1A=(D-L)-1U≡G,f=(D-L)-1b。称G = (D-L)-1U为解Ax = b的高斯-赛德尔迭代法的迭代矩阵.
下面给出GS迭代法的分量计算公式。记
X(k) =(x1(k),…xi (k),…xn(k))T.
由上式有
(D-L)x(k+1)= Ux(k)+b,
或
Dx(k+1)= Lx(k+1)+Ux(k)+b,
即
a_ii x_i (k+1)= bi-∑_(j=1)^(i-1)▒〖a_ij x_j^((k+1)) 〗-∑_(j=i+1)^n▒〖a_ij x_j^((k)),〗 I = 1,2,…,n
于是解Ax=b的高斯-赛德尔迭代法计算公式为[05]
X(0)=(x1(0),…,xn(0))T,
Xi(k+1)=(bi-∑_(j=1)^(i-1)▒〖a_ij x_j^((k+1))-∑_(j=i+1)^n▒〖a_ij x_j^((k)) 〗〗)/aii,
i = 1,2,…,n;k = 0,1,…
或
X(0) = (x1(0),…,xn(0))T,
Xi(k+1)= xi(k)+∆x_i,
∆x_i=(bi-∑_(j=1)^(i-1)▒〖a_ij x_j^((k+1))-∑_(j=i+1)^n▒〖a_ij x_j^((k)) 〗〗)/aii,
i = 1,2,…,n;k = 0,1,…
解线性方程组
高斯-赛德尔迭代公式:取x(0)=(0,0,0)T.
X1(k+1)= (20+3x2(k)-2x3(k))/8,
X2(k+1)= (33-4x1(k+1)+x3(k))/11, k=0,1,…
X3(k+1)= (36-6x1(k+1)-3x2(k+1))/12,
计算x(7)=(3.000002,1.999 988 7,0.999 993 2)T,且
||x*-x(7)︳︳∞< 2.02*10-6,
从上面的例子我们可以知道,Jacobi迭代法和GS迭代法在解线性方程组的时候都是收敛的,而且Jacobi迭代法没有GS迭代法收敛的快。
1.3 .SOR迭代法
超松弛迭代法(SOR方法)[08]
计算量的大小决定了迭代法的困难程度,在迭代过程中,有些是收敛的,但它的收敛速度却非常慢,从而会使计算过程变得非常的麻烦,因此,对于加速迭代过程很重要。
超松弛迭代法的基本思想
超松弛迭代法目的是为了提高迭代法的收敛速度,它是在GS迭代法的基础上进行的,与GS迭代法并没有太大的区别,只是对此做了一些简单的修改。这种方法是对GS迭代法的迭代值适当地进行加权平均,从而获得期望的结果,是解大型稀疏矩阵方程组的有效方法之一,有着广泛的应用。
解Ax=b的SOR方法为[12]
X(0) (初始向量)
X(K+1) =BX(K) + F,K = 0,1,…, (1)
其中L_ω=(D-ωL)-1((1-ω)D+ωU),f=ω(D-ωL)-1b。
下面是用SQR迭代法解Ax=b的分量计算公式。记
X(k) =(x1(k),…xi (k),…xn(k))T.
由(1)可知
(D-ωL) X(K+1)= ((1-ω)D+ωU) X(k)+ ωb,
或
D X(K+1)=DX(k)+ ω(b+LX(K+1)+UX(k)-DX(k)).
由此,得到解Ax=b的SQR方法的计算公式
共3页:
上一页
1
2
3
下一页
上一篇:
条件泊松抽样及其应用
下一篇:
矩阵的标准形及其运用
Dirichlet判别法与Abel判别法的探究
高考与竞赛中有关不等式证明方法及其拓展
层次分析法在决策中的分析及其应用
贝叶斯统计方法及其应用
分支定界法在资源分配中的应用MATLAB仿真
最小费用最大流问题算法及应用
分布式拒绝服务的攻击检测和控制方法
提高教育质量,构建大學生...
基于Joomla平台的计算机学院网站设计与开发
AES算法GPU协处理下分组加...
压疮高危人群的标准化中...
浅论职工思想政治工作茬...
浅谈高校行政管理人员的...
STC89C52单片机NRF24L01的无线病房呼叫系统设计
从政策角度谈黑龙江對俄...
酵母菌发酵生产天然香料...
上海居民的社会参与研究