摘要 对于著名的Aczel 不等式,前人已给出了众多的证明及推广.本文在总结前人给出的结果的基础上,从两个方面研究该不等式,一方面,通过对Aczel 不等式进行相关的变形,得到另一种形式的Aczel不等式;另一方面,通过引入参数 ,给出了满足 的Aczel 不等式,从而推广了应用广泛地Aczel 不等式.39581
毕业论文关键词 Aczel 不等式; Popoviciu 不等式;参数;推广
1.相关介绍
在1956年,Aczel证明了下面的不等式:
 其中,  且
这就是著名的Aczel不等式.众所周知,Aczel不等式在许多领域有重要的应用,正因为如此,近年来,该不等式在其推广、变形和应用方面被广泛关注,已得到了大量相关的论文研究.
后来,Popoviciu[1]将Aczel不等式进行进一步的推广得到定理A.
定理A  设 均为大于0的实数  , 且满足  则有如下不等式成立


且当且仅当 时,等号成立.
Vasic和Pecaric[1]对上述定理进行了更进一步的研究得到定理B.
定理B设 均为大于0的实数,且满足  , 则有如下不等式成立
 
定理C设 均为大于0的实数  , 且满足  则有如下不等式成立
当且仅当 时,等号成立.
2.Aczel不等式的变形
引理1    若 且 , 均为大于0的实数且 ,则
 .
证明:当 时,不等式显然成立。不妨设 ,
令 , ,则易知当 或 时, 不妨设 ,易知
              ,
 .因为 ,则 ;又因为 ,则 .
由 ,有
 
即               
上式两边同乘 次方且利用 ,有
 
即     ,从而有  .
利用极值第二充分条件:
设 在 的某邻域 内一阶可导,在 处二阶可导,且 
 若 则 在 处取得极大值;
  若 则 在 处取得极小值.
由以上讨论可知: 在 处取得极小值.
从而有    
                         .
则        .
即       
从而                   .   
且当且仅当 时,等号成立.
定理1 设 均为大于0的实数, 且满足  则当 时有如下不等式成立
  且当且仅当 时等号成立.
证明:(用数学归纳法)当 时,上述不等式显然成立.
当 时,即证
因为
 
存在实数 满足 ,由引理1可知:
上一篇:矩阵复原问题的可解性研究
下一篇:股票大盘指数马尔可夫预测法

微课在中学数学素质教育中的应用

中学数学教学中的模型思想与应用

凯勒流形的复结构与代数结构研究

可展曲面的判定构造及其应用

Dirichlet判别法与Abel判别法的探究

一维Schroedinger算子只有离散谱的条件

螺纹钢期货交易中几个影...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

从政策角度谈黑龙江對俄...

浅谈高校行政管理人员的...

浅论职工思想政治工作茬...

酵母菌发酵生产天然香料...

AES算法GPU协处理下分组加...

压疮高危人群的标准化中...

提高教育质量,构建大學生...

上海居民的社会参与研究

基于Joomla平台的计算机学院网站设计与开发