小结  求(最大)公约数和(最小)公倍数对学生来说并不难,但是题目经常是以应用题的形式出现,学生要学会把生活问题转化成数学问题。在求最大公约数的时候,可以运用多种方法求解,根据实际情况选择最合适的方法,节省时间。

3.1.3质数有关

质数有关问题,一般是给出几个质数,告知这几个质数之间的关系,以此求这几个质数是多少,考察学生对质数的理解情况。

例3  如果a,b均为质数,且3a+7b=41,则a+b=          

(第4届“希望杯”全国数学邀请赛小学五年级第2试 第8题)

分析  这是一题考察学生对质数掌握情况的题型。重点是2作为唯一一个偶质数,根据奇偶性分析2是否是其中一个质数。

解法  因为a,b均为质数,若两个数都为奇质数,则3a为奇数,7b也为奇数,奇数+奇数=偶数,而41为奇数,不符合要求,因此a,b中必有且只有一个偶质数2。若a=2,则b=(41-3×2)&pide;7=5;若b=2,则a=(41-7×2)&pide;3=9不符合要求。所以a=2,b=5  则a+b=7.

小结  在有关质数的问题上,学生容易忽视2这个特殊的质数。学生遇到这类条件只有质数的题目往往手足无措。其实在碰到质数不明确的情况下,要对是否存在2这个质数进行讨论。从质数2入手,能够把题目变得非常简单。

上一篇:因子分析和聚类分析浙江省市域经济差异研究
下一篇:中日《等腰三角形》教学内容对比

微课在中学数学素质教育中的应用

中学数学教学中的模型思想与应用

高考与竞赛中有关不等式证明方法及其拓展

数学核心素养高中学生的数学建模能力研究

初中数学课堂教学研究

数学期望方差和协方差在金融保险领域的应用

浅谈小学数学图形与几何的教学策略

酵母菌发酵生产天然香料...

基于Joomla平台的计算机学院网站设计与开发

上海居民的社会参与研究

STC89C52单片机NRF24L01的无线病房呼叫系统设计

AES算法GPU协处理下分组加...

从政策角度谈黑龙江對俄...

浅谈高校行政管理人员的...

浅论职工思想政治工作茬...

提高教育质量,构建大學生...

压疮高危人群的标准化中...