3.1 公式法   

利用通项公式  求展开式的特定项包括最大的项、有理项、中间的项、求常数项及这些特定项的系数的问题.公式法比较直观,容易掌握,关键在于熟练掌握,不能搞混淆.

例1 求(2005年湖北高考) 展开式中整理后的常数.

解:把三项看作两项展开: , , ;  ;

 ,   ,故展开式的常数项为:

注:公式法是一种常见的方法,也是最基本的方法,简单直观,容易入手.用公式解答,说明题目的难度并不大,重点在于熟练掌握二项式定理的基本性质及其应用.

3.2 放缩法

放缩法是不等式的证明中一种非常重要的方法,也是一种常用的方法.在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果.但放缩的范围较难掌控,经常出现放缩后得不出结论或得出相反结论的情况.因此,缩放方法的运用,如何确定缩放的目标是特别重要的.

上一篇:浅析矩阵相乘可换的条件
下一篇:三角函数不等式及其证明方法

微课在中学数学素质教育中的应用

层次分析法在决策中的分析及其应用

分支定界法在资源分配中的应用MATLAB仿真

矩阵在经济领域中的应用研究

齐次马尔科夫过程在金融保险方面的应用

常微分方程在金融工程中的若干应用

因子分析法在医药上市企...

从政策角度谈黑龙江對俄...

基于Joomla平台的计算机学院网站设计与开发

压疮高危人群的标准化中...

浅论职工思想政治工作茬...

STC89C52单片机NRF24L01的无线病房呼叫系统设计

提高教育质量,构建大學生...

上海居民的社会参与研究

酵母菌发酵生产天然香料...

AES算法GPU协处理下分组加...

浅谈高校行政管理人员的...