(具有随机相位以保证广义平稳)组成的随机过程,那么这个信号可以分解成一个确定性成分(正弦信号)和一个纯随机成分(白噪声)。或者可以把这种分解看成把功率谱分解成一个表示正弦信号的离散成分(表现为冲激信号的形式)和一个白噪声的连续成分。wold分解定理的一个推论是:如果功率谱完全是连续的,也就有任意的ARMA过程或者AR过程可以表示为一个阶次无限的MA过程[2]。这些定理对研究参数模型很重要,因为如果选择了一个不太合适的模型,但模型的阶数只要足够高,仍然能够比较好地逼近被建模的随机过程。

一般来说估计移动平均模型和自回归移动平均模型参数一般需要解一组非线性方程,而估计自回归模型参数通常只需要解一组线性方程,这就说明了用自回归模

型求谱估计相对简单。如果被估计过程是p阶自回归过程,那么自回归模型便能很精准地模拟它;如果被估计过程是ARMA或MA过程,那么用自回归模型作为它们的模型时,虽然不可能有它自身模型估计来得准确,却可以尽可能逼近之。自回归模型因具有分辨率较高,平滑性好等良好的性能,故是被研究最多并获得广泛应用的一种参数模型。

2.2自回归模型的正则方程

假设u(n)是方差为2的白噪声序列,u(n)和x(n)都是实平稳的随机信号,如果要求得(2-1-10)式中功率谱估计的模型系数{a}和2,需要建立自回归模型的模型系数ak和x(n)的自相关函数的关系,也就是自回归模型的正则方程。

上一篇:变分模态分解方法研究及其在信号处理中的应用
下一篇:基于ZigBee协议轨道交通环境监测系统设计+电路图

ZPW-2000A型无绝缘移频自动...

LCD自动测试系统测试数据采集与处理

SwitchBox路由通讯产品自动测试系统设计

海洋工程自主机器人AUV声呐传感器设计

海洋工程自主机器人AUV水面监控系统设计

相控阵雷达天线自适应置零技术的研究

基于Skype时间序列模型的时...

第三方支付风险防范文献综述和参考文献

ARM新生儿水床控制系统设计硬件设计+源代码

反转课堂在小学数学教学...

流动人员人事档案信息化...

浅析地籍档案的信息化管理【2143字】

城镇化进程国内外研究现状

超声波自动测量物体液位系统设计任务书

机械安全标准国内外研究现状

80C51单片机水箱液位控制系...

内河智能航运信息服务(...