Y∕ km    30.4    30.5    31.1    31.2    30.5    31.2    31.4    31.9
位置    9    10    11    12    13    14    15    16
X∕ km    12.6    12.8    12.7    13.4    18.5    18.7    19.3    19.5
Y∕ km    31.5    31.1    31.8    31.6    31.1    31.0    31.1    31.8
表3 敌方多机位置
其得到聚类结果如表4所示。
表4 改进后FCM算法的聚类结果
    改进后的FCM
类1中心    0.5993,30.7988
类2中心    5.8017,31.2023
类3中心    12.90001,31.4502
类4中心    19.0021,31.4445
循环次数    13
运行时间    0.0465
由以上结果对比可以看出,在空战多目标编队之间距离相对较大时,该改进的FCM算法更能对真实多目标来划分,且更能与实际态势相符。
5.结论
5.1 本文研究工作总结
本文在对模糊聚类的相关理论和方法进行全面、系统的研究的基础上,对FCM算法提出了一些改进的方法, 并将改进后的方法应用到知识发现过程中。本文主要的研究工作包括以下几个方面:
本文回顾了模糊聚类理论及其分析的方法,并重点研究了模糊C―均值(FCM)聚类算法,对其实现原理及实现步骤都进行了详细阐述。
(1) 本文针对模糊C―均值算法无法自动得到最佳聚类数目的缺陷,对其进行改进。本文所采用改进后的FCM算法是一种基于减法聚类的FCM算法。利用减法聚类得到聚类数目和聚类中心,作为FCM算法的起点来初始化FCM算法,不仅不需要预先设定分类数目,而且提高了算法效率。
(2) 本文将改进后的模糊C―均值(FCM)算法应用到知识发现过程中,并通过实例证明,取得了良好的效果。
5.2 后续研究工作与展望
将模糊聚类方法应用于知识发现这一领域是一个很有意义的课题,有着广泛的使用价值。但到目前为止,由于本人水平的局限以及时间上限制,本文只是在这领域做了很小部分分析研究,还有许多问题有待进一步深入研究:
(1) 文中提出改进的模糊聚类初始化算法,是通过计算减法聚类对模糊聚类数和初始聚类中心进行优选,但模糊聚类算法的改进还有很多,如对模糊加权数m的选择等。因此,在今后工作当中继续探究参数m有效性评价规则,并结合特定应用领域,对m的选取提供理论指导。
(2) 在将改进的FCM算法应用于知识发现中时,只是采用了某一具体的实例来统计数据并进行研究分析,并不一定具有广泛的代表性。在今后的工作中,应该结合现实当中更多信息处理中的分析数据,加以分析研究。
上一篇:Lamb波板型结构中的宽频导波检测方法
下一篇:AT89S51单片机的音乐彩灯控制器设计+仿真图+源代码

连续-离散型状态观测器设...

模糊算法在PID控制系统中的应用MATLAB仿真

数字水印技术在图像加密中的应用MATLAB仿真

MATLAB小型风光互补发电系...

灰色理论在PID控制器中的应用研究

Matlab零相差前馈补偿在P...

比率分析法在企业财务管...

拉力采集上位机软件开发任务书

浅谈传统人文精神茬大學...

多元化刑事简易程序构建探讨【9365字】

《醉青春》导演作品阐述

高校网球场馆运营管理初探【1805字】

辩护律师的作证义务和保...

谷度酒庄消费者回访调查问卷表

浅谈新形势下妇产科护理...

国内外无刷直流电动机研究现状

中国古代秘书擅权的发展和恶变