摘要:本论文以硝酸铜、硝酸钴、硝酸铈和硝酸锆为原料采用共沉淀法制备了Ce0.6Zr0.4O2 固溶体,以此作为载体并采用等体积浸渍法制备了一系列CuxCo1-x /Ce0.6Zr0.4O2 催化剂,利用X射线衍射(XRD)、程序升温还原(H2-TPR)等技术手段对所制备催化剂的晶相结构和表面分散状况进行了分析,最后采用色谱流动法考察了所制备催化剂的CO低温氧化特性。实验结果表明,当Co掺杂量为0.05时,Cu0.95Co0.05/Ce0.6Zr0.4O2催化剂的CO氧化活性最高。四种催化剂催化活性的大小次序为:Cu0.95Co0.05/Ce0.6Zr0.4O2>Cu0.9Co0.1/Ce0.6Zr0.4O2>Cu0.75Co0.15/ Ce0.6Zr0.4O2。说明适当掺杂量的Co有利于催化剂氧化活性的提高。5100
关键词:浸渍法;催化活性;低温氧化;还原特性 毕业论文
Effect of different Cu/Co ratio of Cu-Co/Ce-Zr-O catalyst on low-temperature CO oxidation activity
Abstract: By using copper nitrate, cobalt nitrate, as initiative materials, this paper takes co-precipitation method to produce the solid solution of Ce0.6Zr0.4O2. By the method of isometric impregnation, the solid solution is taken as the carrier to produce a series of catalyst of CuxCo1-x/Ce0.6Zr0.4O2. This paper analyzes the ceramic catalyst and surface dispersion with the technology of XRD, H2-TPR, and so on. It finally resorts to the mobile chromatography to study the oxidative characteristics under low temperature. The experimental result turns to be that when doping amount of Co is 0.05, the oxidative activity of CO is the highest among Cu0.95Co0.05/Ce0.6Zr0.4O2 catalyst. The activity of four catalysts is ranked from high to low as follows: Cu0.95Co0.05/Ce0.6Zr0.4O2>Cu0.9Co0.1/Ce0.6Zr0.4O2>Cu0.75Co0.15/Ce0.6Zr0.4O2 which means that appropriate doping amount of Co is in favor of the improvement of oxidative activity of catalyst.
Keywords: impregnation method;catalytic activity;oxidation for low-temperature;reduction property