2. A detailed example maybe found for instance in Hochkirch et al. (2002).Examples for integral constraints are volume (e.g. the dis-placement volume is between ..., the tank volume equalsto ...) and centroids (e.g. the longitudinal center of buoy-ancy shall shift no more than ...) which constitute directgeometric constraints. Indirect integral constraints oftenoriginate from hydrostatic considerations (e.g. minimummetacentric height as determined via the geometry of thedesign waterline).Differential constraints are fairness (e.g. no hollownessmust be present in a certain hull region) and producibility(e.g. plates should be developable to a given extend) etc.As opposed to positional constraints which usually arestraight forward to evaluate, differential constraints callfor more computational effort and, possibly, even requiresome additional simulations.Figure 1: Feasible hull shape with regard to propellerclearanceFigure 2: Infeasible hull shape due to violation of con-tainer hard pointsAs becomes evident from the examples above many con-straints are of inequality type and can generally be writtenin the formCk(−→ x ) ≤CkMax+τk (1)orCk(−→ x ) ≥CkMin −τk (2)and, hence, converted into the standard formatgk(−→ x ) :=Ck(−→ x )−CkMax≤ τk (3)andgk(−→ x ) :=CkMin −Ck(−→ x ) ≤ τk , (4)respectively. Here τk is a user-specified tolerance. Itequals 0 under strict circumstances but may assume asmall positive value if a constraint violation could be ac-ceptable to investigate the region just outside the feasibledomain.In geometric modeling equality constraints are of less im-portance since they often serve to reduce the number of free variables, see for instance Abt et al. (2001) for moredetails. Therefore, priority is given here to the manage-ment of inequality constraints.Constraint managementConstraint management comprises• handling (set up),• analysis,• monitoring,• assessment.The handling and analysis of constraints is realized insidethe Computer Aided Design tool or outside – the latterfor instance if an elaborate simulation needs to be per-formed such as a Finite Element Method analysis (FEM)or a Computational Fluid Dynamics run (CFD). In orderto monitor and assess a set of constraints it is necessaryto decide on a set of free variables−→ x which might even-tually influence the design – similar to what is done in anautomated optimization. A parametric approach to geo-metric modeling should be followed so as to reduce thedesign’s complexity on the basis of a problem-dependenthigh-level definition, see Birk and Harries (2003).Monitoring and assessmentTrying to circumvent a potential bias, a (quasi-)randomsequence of variants should be generated which can beachieved by applying a Sobol algorithm, see Press et al.(1988). Fig. 3 illustrates the distribution of a Sobol se-quence with 5000 variants. The actual design problemcomprised 14 free variables. A plot in R14 being impossi-ble, projections onto the ˜ x1- ˜ x2-plane and the ˜ x1- ˜ x3-planehave been selected, ˜ x1, ˜ x2 and ˜ x3 being normalized freevariables˜ xi := xi−xminxmax−xmin. (5)Any other combination of free variables would result insimilar figures.The Sobol sequence constitutes a design of experiments(DoE) and brings about the statistical basis for monitor-ing and assessment. (It is also regularly performed earlyin an automated optimization for exploration purposes,see Abt et al. (2003). The key difference is that compu-tational intensive objectives need not be computed at thisstage.)A first assessment of the complexity of the design domainis to compute the ratio between the number of feasibledesigns Nf and the overall number of designs Nt :d := NfNt. (6)An unconstrained problem is then characterized by d = 1while a fully active problem shows d = 0. A weakly con-strained problem may be found if 0.9 < d < 1.0 whileFigure 3: Sobol sequencea constraint dominated problem is given by 0 < d < 0.1.(This is a subjective appreciation which may shift accord-ing to the problem field.)If the domain index is rather small – i.e., just a few de-signs are valid – it is useful to contemplate the relaxationof one or several inequality constraints. The domain in-dex d varies with the limiting values CkMin and CkMaxofall constraints, see Fig. 6 and further discussion below.The variation of d with respect to changes in the specifiedlimiting values therefore provides information on whichconstraints are beneficial to relax so as to gain an in-creased number of feasible designs. Since minor changesare more likely to be acceptable high partial derivativesclose to the original limits are advantageous because evena small constraint relaxation will then already help.When assessing specific constraints it is rather straightforward to distinguish active (gk(−→ x ) ≥ 0) and inactive(gk(−→ x ) < 0) constraints.
上一篇:80500DWT液散货船首部F11C分段船体生产设计+CAD图纸
下一篇:船舶舾装卫生单元的标准化和参数化的发展研究+CAD图纸

合金元素对镁合金塑性变...

小口径弹引信本体机械加工工艺和工装设计

红枣自动去核机的去核机构的设计

90米集装箱船船体结构规范设计+CAD图纸

136TEU内河集装箱船船体结构规范设计+CAD图纸

58000DWT散货船货舱308C分段生产设计+CAD图纸

25000DWT油船船体建造方案及...

小学《道德与法治》学习心得体会

人事管理系统开题报告

林业机械作业中的安全性问题【2230字】

弹道修正弹实测弹道气象数据使用方法研究

组态王文献综述

大学生就业方向与专业关系的研究

淮安市老漂族心理与休闲体育现状的研究

浅谈动画短片《天降好运》中的剧本创作

适合宝妈开的实体店,适...

紫陵阁