方差为1    方差为0.00001
情况3    (0,0),(0,1)(1,0),(1,1)    大小为4 4
方差为1    方差为.0.00001
情况4    (0,0),(0,1)(1,0),(1,1)    大小为3 3
方差为1    方差为0.00009

表3.2与表3.3为A ,B两个图象重建结果的PSNR值,其中PSNR值越大就代表失真越少。
从实验结果可见,重建所得的图像与低分辨率图像通过双线性插值所得到的图像相比,得到了更好的效果,分析实验数据可知,加入不同的运动模糊和噪声值,所得到的实验结果各不相同,我们可以明显地看出重建后图像内的噪声减小了许多,边缘也得到了很好的保持。
为了验证算法的去噪效果,我们对其中的A图按表3.1的实验设置进行超分辨率重建(此次实验加入的噪声均值为0.1),所得到得表3.4为A图象重建结果的PSNR值。
(a)情况1                 (b)情况2  
 (c)情况3                (d)情况4
图3.6 实验得到不同的重建结果
 (a)情况1                 (b)情况2  
 (c)情况3                   (d)情况4
    图3.7 实验得到不同的重建结果    
表3.2 A图象重建结果的PSNR
    情况1    情况2    情况3    情况4
双线性插值PSNR    20.732    21.452    21.121    20.189
重建图像 PSNR     23.464    22.905    23.676    21.708

表3.3 B图象重建结果的PSNR
    情况1    情况2    情况3    情况4
双线性插值PSNR    20.132    20.395    20.864    20.389
重建图像 PSNR     21.438    21.905    22.676    21.758


表3.4 A图象重建结果的PSNR
    情况1    情况2    情况3    情况4
双线性插值
PSNR    15.356    16.202    16.721    15.205
重建图像
PSNR    17.761    17.852    18.451    17.503
(c)情况3                    (d)情况4
图3.7 实验得到不同的重建结果
从实验结果可见,对测试图像加入均值不为0的噪声(如椒盐噪声)时所得到的图像的效果比加入噪声均值为0时的噪声的重建效果要差,这就说明了凸集投影算法降噪能力较差。分析实验数据可知,重建后图像内的噪声有所减小,边缘也得到了保持。
4.3 传统正则化超分辨率算法实验结果与分析
在超分辨率技术中,正则化方法的主要目的是考虑图像的先验信息,引入合理的约束来得到更好的复原结果。本实验首先读取原始测试图像,通过高斯模糊产生高斯模糊图像,然后加入噪声进行迭代,求解出正则化参数,最后得到超分辨率图像重建结果。
本文实验从基于噪声分布的方法入手,迭代算法形式如式(2.12)所示。加入的均值为0,方差为0.005高斯噪声。测试图像的原始图像和降质图像如图3.7和图3.8所示。图3.8显示了传统正则化方法重建的图像。可见传统正则化方法相更好的保持了图像的边缘和纹理,同时又保持了更好的去噪效果。图3.8中所示重建图像,计算出的PSNR=17.931。由于传统正则化方法根据图像边缘情况对图像加以局部的控制,因此得到了更好的正则建效果。
上一篇:无线传感器网络中数据传输最优路径选择
下一篇:基于旋律的音乐检索系统设计与实现

自回归模型谱估计方法设计+Matlab源代码

PLC某600吨船损管监控系统...

MATLAB舰船电能分配及管理系统设计

Matlab的光栅投影相位校正与展开算法设计

海洋工程自主机器人AUV水面监控系统设计

MATLAB数字图像处理的交通信号灯识别系统设计

基于MATLABGUI的粒子滤波算法实现+源代码

浅谈传统人文精神茬大學...

辩护律师的作证义务和保...

多元化刑事简易程序构建探讨【9365字】

谷度酒庄消费者回访调查问卷表

浅谈新形势下妇产科护理...

《醉青春》导演作品阐述

拉力采集上位机软件开发任务书

中国古代秘书擅权的发展和恶变

高校网球场馆运营管理初探【1805字】

国内外无刷直流电动机研究现状