摘要:二维钙钛矿材料由于其高的吸光能力、大的载流子扩散长度和高的稳定性在光电子器件应用中有广阔的前景,例如发射激光,光学探测器,辐射探测器等。最简单的制备方法是从钙钛矿溶液中旋涂,然而该方法会导致较高的表面粗糙度和不均匀的结晶性。针对这个缺点,本课题通过化学气相沉积方法,调节加热温度,保温时间,气流速度以及衬底位置等制备参数在常压下制备出CsPbX3(X=Cl、Br、I)大面积的,二维单晶纳米片,横向尺寸可达到100μmX100μm;制备出的CsPbX3(X=Cl、Br、I)二维纳米片有很强的光致发光性能,在激光的照射下CsPbCl3、CsPbBr3、CsPbI3的半峰宽分别可达到9.1nm,19.1nm和38.9nm,并且通过调节卤素的含量得到了可见光范围内连续的光谱(410nm—
710nm);CsPbX3(X=Cl、Br、I)二维纳米片表面平整,表面粗糙度可到达0.216nm。
关键词 钙钛矿化学气相沉积大面积单晶
毕业设计说明书外文摘要
Title Preparation of two - dimensional perovskite by vapor deposition and its photoelectric properties
Abstract:Two-dimensional perovskite materials have broad prospects for optoelectronic device applications due to their high absorptive capacity, large carrier diffusion length and high stability, such as emission lasers, optical detectors, radiation detectors and the like. The simplest preparation is to spin from the perovskite solution, but this method results in higher surface roughness and uneven crystallinity. In this paper, CsPbX3 (X = Cl, Br, I) large-area, two-dimensional single-crystal nanosheets were prepared by chemical vapor deposition method, adjusting the heating temperature, holding time, airflow velocity and substrate position. Horizontal size can reach 100μmX100μm. The two-dimensional nanosheets of CsPbX3 (X = Cl, Br, I) have strong photoluminescence properties. The half width of CsPbCl3, CsPbBr3 and CsPbI3 can reach 9.1nm, 19.1nm and 38.9 respectively under laser irradiation. And the continuous spectrum (410 nm-710 nm) in the visible light range was obtained by adjusting the content of the halogen. CsPbX3 (X = Cl, Br, I) two-dimensional nanoplate surface smooth, surface roughness can reach 0.216nm.
Keywords Perovskite Chemical vapor deposition Large-area Single-crystal
目 次
1引言(或绪论) 1
1.1二维材料1
1.2传统制备方法1
2课题现状3
2.1 气相沉积法合成金属有机卤化物钙钛矿(CH3NH3PbX3(X=Cl、Br、I))32.2 气相法合成全无机卤化物钙钛矿(CH3NH3PbX3(X=Cl、Br、I))3
3实验材料与研究方法5
3.1实验仪器与实验材料 6
3.2表征方法与表征参数 5
3.3制备方法 8
4样品表征与探讨9
4.1样品宏观形貌 9
4.2样品结构与成分分析13
4.3样品光学性能测试20
5生长动力学研究 22
5.1样品宏观形貌 22
5.2样品结构与成分分析23
5.3样品光学性能测试 24
5.4样品光学性能测试 25
6晶体管器件制备与测试 27
6.1晶体管器件制备方法 27
6.2晶体管器件测试方法27
6.3晶体管器件测试结果分析27结论30致谢31参考文献32