毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
纳米乳状液包埋柠檬醛的技术研究(5)
还有一些其他常用的壁材,如乳清蛋白。乳清蛋白是从牛奶中分离提取出来的一种相对低分子蛋白,在食品微胶囊应用中常与其他壁材复配使用。乳清蛋白中引入乳糖能够减少非极性物质的膜通过,无定形态的乳糖具有亲水性密封特性,能够有效阻止疏水性的芯材通过薄膜,进而有效提高微胶囊的稳定性[8]。明胶-蔗糖和改性淀粉联合作为壁材时,所得到的微胶囊产品不但具有很好的流动性,
机械
强度以及表面形态也得到很大改善[9]
1.2.4 微胶囊制备方法
微胶囊制备方法大致可分为三类:聚合反应法,相分离法,物理及机械法。聚合反应法包括界面聚合法、原位聚合法和悬浮交联法;相分离法包括水相相分离法和油相相分离法;物理及机械法包括融化分散冷凝法、喷雾干燥法、溶剂或溶液萃取法。常用于制备纳米胶囊的方法有复凝聚法、喷雾冷凝法、挤压法、高压乳匀法等。
高压乳匀法是制备固体脂质纳米粒(SLN)最常用的、可靠而高效的方法[10]。在高压(通常为100-2000bar,1bar=105Pa)的作用下使流体通过一个只有几微米的狭缝,在突然减压膨胀和高速冲击碰撞的双重作用下,流体的速度可以达到1000km/h,在其内部形成很强的湍流和涡穴,同时在极高的剪切力的作用下,使颗粒尺度达到纳米级高压乳匀法又可分为热匀法(hot homogenization technique,HHT)和冷匀法(cold homogenization technique,CHT)。热匀法在高于脂质熔点以上的温度下来制备SLN。将脂质和药物在高于脂质熔点5℃左右的温度下熔融,并与相同温度的表面活性剂水溶液混合,通过高速搅拌制备热的初乳,将制得的初乳在高于脂质熔点的温度下高压乳匀,一般在500 bar的压力下乳匀3次,得到的微乳在室温下冷却、固化形成固体脂质纳米粒。由于高压乳匀法生产能力大,乳化效率高,乳状液粒径小,分布均匀且稳定性高。因此,本实验拟采用高压乳匀法制备柠檬醛纳米胶囊。
1.3微乳液稳定性及测定方法
1.3.1高压乳匀法应用及影响因素
处方和工艺中,多种因素均会影响纳米粒的粒径及其分散性。乳化剂种类不同,纳米粒粒径也不同,且一般来说随乳化剂用量的增加粒径降低,加入一定的辅乳化剂也可使粒径减小。此外,采用高压乳匀法制备纳米粒,当超过最佳条件时,乳匀压力和循环次数增加会使粒径增大,而且当温度低于脂质的相转变温度时粒径增加;相对而言,HHT所制得的SLN一般比CHT的粒径小,且多分散指数也小。对于热匀法而言,一般温度越高,内相脂质黏度越小,形成的SLN粒径越小网,大多数通过热匀法制备的SLN粒径在500 nm以下。
共5页:
上一页
1
2
3
4
5
下一页
上一篇:
油酸修饰纳米有机Sn的制备及摩擦化学特性的研究
下一篇:
包覆UVA/UVB防晒剂固体脂质防晒粒的影响因素研究
纳米二氧化钛的机械粉碎...
乳化粒子大小对乳状液流变及稳定性的影响
EIP法制备W/O/W型多重结构乳...
钴基纳米阵列电极设计及表征
二氧化锡纳米微球制备和光催化
纳米脂质载体包覆黄芩苷的性能研究
液相还原法制备银纳米片和银纳米颗粒
高校网球场馆运营管理初探【1805字】
国内外无刷直流电动机研究现状
拉力采集上位机软件开发任务书
谷度酒庄消费者回访调查问卷表
中国古代秘书擅权的发展和恶变
浅谈新形势下妇产科护理...
多元化刑事简易程序构建探讨【9365字】
辩护律师的作证义务和保...
《醉青春》导演作品阐述
浅谈传统人文精神茬大學...