摘要超支化聚酯(HBPE)是通过熔融缩聚法合成的,其分子量为5480 g/mol。多孔中空纤文膜是由非溶剂致相分离法制备的,铸膜液中含有聚砜(PSf)、N-甲基-2吡咯烷酮(NMP)、聚乙二醇400(PEG400)和HBPE所组成。通过对膜形态,渗透性能,瞬态纯水接触角和膜的力学性能进行测定,以探讨HBPE对膜结构及性能的影响。另外,HBPE会导致膜中指状孔和海绵状孔的共存。 当HBPE的质量百分比从0 wt%增加到3 wt%时,它的接触角会有所下降。同时,空隙率,平均有效孔径,纯水通量,和膜的断裂强度会随着HBPE的含量而改变。23683 毕业论文关键词:聚砜;多孔膜;超支化聚酯;聚乙二醇
Preparation and characterization of PSf hollow fiber membrane from PSf–HBPE–PEG400–NMP dope solution
Abstract: Hyperbranched polyester (HBPE) was synthesized by melt polycondensation and the molecular weight of prepared HBPE was 5480 g/mol. Porous hollow fiber membranes were prepared via non-solvent induced phase separation (NIPS) from dope solutions composed of polysulfone (PSf), N-methyl-2-pyrrolidone (NMP), polyethylene glycol 400 (PEG400) and HBPE. Membrane morphologies, permeation performance, transient pure water contact angle and mechanical property of the prepared membranes were measured to investigate the effects of HBPE on membrane structures and properties. The addition of HBPE led to the coexistence of finger-like and sponge-like structures in the membranes. When the HBPE content increased from 0 to 3.0 wt%, there was a sharp decrease in contact angle. At the same time, the porosity, mean effective pore size, pure water flux and the breaking strength of membranes increased with the HBPE content.
Key words: polysulfone,;porous membranes,;hyperbranched polyester,;polyethylene glycol